R&D of Bulk Anisotropic Nanograin Composite Rare Earth Magnets

The project was sponsored by the US DARPA, AFRL, ONR, and DoE Presented in Beijing, China, August, 2006

Motivation

Develop technologies

- To retain nanostructure in a bulk fully dense composite magnet
- To create the desired nanograin alignment
- To obtain an ideal microstructure, in which a fine and highly dispersed magnetically soft phase is uniformly distributed in a nanograin magnetically hard matrix phase

Early Nanocomposite Magnets

- In 1988, the Philips group observed _MH_c ≈ 3 kOe in an annealed melt-spun Nd₂Fe₁₄B/Fe₃B alloy powder
- Extensive R&D followed worldwide in 1990s
- Principal technical difficulties
 - How to make nanocomposite powders into a bulk magnet with full density and, at the same time, retain the nanograin structure
 - How to create desired grain alignment and, obtain a high-performance nanocomposite magnet

Effect of Nanograin Structure

Conventional micron grain Sm(Co,Fe,Cu,Zr)_{~7.3}

Nanograin structured Sm₂Co₁₇

- In 1991, J. Wecker, et al. obtained 6 kOe after annealing a mechanically alloyed stoichiometric Sm₂Co₁₇ alloy powder at 700° C for 30 minutes.
- In 1996, S.K. Chen, et al. obtained 4 kOe after annealing a mechanically alloyed SmCo₁₀ alloy powder at 750° C for 20 minutes
- a high coercivity of 15.6 kOe was accomplished at the University of Dayton Magnetics Laboratory after annealing a mechanically alloyed Sm₂Co₁₇ specimen at 750° C for only 1 minute

New Concepts of Consolidation

- Consolidation does not have to be performed at very high temperature
 Not 1080 1200° C
 But 600 800° C (Crystallization temperature)
- Consolidation does not have to be performed for a long period of time
 - □ Not hours
 - □ But a few minutes

If a new consolidation technology with relatively low temperature and very short time can be developed, then nanocomposite powder can be bulk nanocomposite magnets

Inductive Hot Compaction

- Relatively low temperature: 600 - 700 °C
- Very short compaction time: ~ 2 minutes
 - □ Heating from ~20 °C to the compaction temperature (around 700 °C)
 - □ Performing hot compaction □ Cooling to \sim 300 °C
- Relatively low pressure: 10⁸ Pa
- Near full density can be obtained after the compaction
- Excessive grain growth can be avoided
- Low cost

A process of consolidation from powder to bulk material with near full density

A process of crystallization of an amorphous alloy and formation of a nanograin material

Comparison of density values obtained using Inductive Hot Compaction and Conventional Consolidation

Isotropic Nanocomposite Nd_{6.7}Pr_{4.3}Fe_{77.7}Co_{5.5}Ga_{0.2}Nb_{0.1}B_{5.5} Magnets

9

Technologies of Synthesizing Anisotropic Nanograin Composite Nd-Fe-B/Fe Magnets

Hot compaction and hot deformation of

- A single Nd-poor Nd-Fe-B powder (Nd < 11.76 at%)</p>
- A powder mixture of a Nd-poor Nd-Fe-B powder (Nd < 11.76 at%) and a Nd-rich Nd-Fe-B powder (Nd > 11.76 at%)
- A powder mixture of a Nd-rich Nd-Fe-B powder (Nd > 11.76 at%) and an α-Fe or Fe-Co powder
- A Nd-rich Nd-Fe-B powder particles (Nd > 11.76 at%) coated with α-Fe or Fe-Co layers

Processing

Processing a Single Nd-poor Nd-Fe-B Powder

 $Nd_{10.8}Pr_{0.6}Dy_{0.2}Fe_{76.3}Co_{6.3}Ga_{0.2}B_{5.6}$

 $Nd_5Pr_5Dy_1Fe_{73}Co_6B_{10}$

Processing a Powder Mixture of a Nd-poor Nd-Fe-B Powder and a Nd-rich Nd-Fe-B Powder

Nd_{10.8}Pr_{0.6}Dy_{0.2}Fe_{76.1}Co_{6.3}Ga_{0.2}Al_{0.2}B_{5.6} RE: 11 at% + 13.5 at% → 11.6 at% Hot compaction: 650 $^{\circ}$ C - 2 min, 25 kpsi Hot dformation: 880 $^{\circ}$ C - 6 min, 10 kpsi, height reduction: 63%

Dark gray phase: Nd-poor Nd-Fe-B: isotropic Light gray phase: Nd-rich Nd-Fe-B: anisotropic

Effect of Nd Content in the Nd-Poor Nd-Fe-B Powder

13.5 at% + 11 at% → 11.6 at% 13.5 at% + 6 at% → 11.6 at% 13.5 at% + 4 at% → 11.6 at%

α-Fe and Fe-Co Powders Used

SEM Microstructure after Hot Compaction

8 wt% α -Fe

Demagnetization Curve of Hot Compacted Nd_{13.5}Fe₈₀Ga_{0.5}B₆/ a -Fe (91.7%/8.3%)

17

Microstructure of Nanograin Composite Nd-Fe-B/α-Fe and Nd-Fe-B/Fe-Co Magnets

• α -Fe powder

- □ Tend to be agglomerated
- □ Form large soft phase
 - □ Length: 10 30 microns
 - □ thickness: 5 10 microns
- Fe-Co powder
 - □ Size of soft phase: 5 40 microns

Demagnetization Curves of Hot Deformed Composite Magnets

Nd_{13.5}Fe₈₀Ga_{0.5}B₆/α-Fe (95 wt%/5 wt%)

Nd_{13.5}Fe₈₀Ga_{0.5}B₆/Fe-Co (95 wt%/5 wt%)

Comparison of XRD Patterns

- (a) A magnet made by blending a Nd-poor Nd-Fe-B and a Nd-rich Nd-Fe-B with (BH)_{max} ≈ 40 MGOe
- (b) A magnets made by blending a Nd-poor Nd-Fe-B with a commercial a-Fe powder with (BH)_{max} ≈ 50 MGOe
- (c) A sintered Nd-Fe-B magnet with (BH)_{max} ≈ 40 MGOe

Better grain alignment:

- Enhanced (004), (006), and (008) intensity
- Greater than 1 (006)/(105) ratio

TEM Micrograph of Nd_{13.5}Fe₈₀Ga_{0.5}B₆/ a -Fe (95%/5%) Composite Magnet

Hard/Soft Interface of Nd_{13.5}Fe₈₀Ga_{0.5}B₆/ a -Fe (95%/5%) Composite Magnet

Effect of Amount of Soft Phase

23

Comparison of three Types of Composite Magnets

Significance of this Technology

- The upper limit of the soft phase predicted by the current model of interface exchange coupling is around 20 – 30 nm
- The size of the soft phase can be 1000 times larger than this dimension
- This technology is very cost effective
- This technology leads to a new type of nanograin composite magnets

A New Type of Nanograin Composite Nd-Fe-B/α-Fe Magnets

- Grain size → nanocomposite
 - □ Hard phase: nanometer range
 - □ Soft phase: nanometer range

■ Phase size → microcomposite

- □ Hard phase: micrometer range
- □ Soft phase: micrometer range

The overall Nd content in a composite magnet

- Can be
 < 11.76 at%
 = 11.76 at% (stoichiometry)
 - □ > 11.76 at%

A Nd-rich phase and an α-Fe (or Fe-Co) phase can co-exist simultaneously

Composite magnet is in a non-equilibrium condition

Effect of Soft Phase and Ideal Microstructure

Effect of adding the soft phase

- □ Enhance magnetization
- Decrease coercivity

The Coercivity drop depends on

- □ The amount of soft phase
- □ The size and distribution of the soft phase

Ideal microstructure

- □ Soft phase
 - Very small size
 - Highly dispersed
 - □ Uniformly distribution
- □ Hard phase
 - □ Nanograins
 - **Good** grain alignment

Current Technical Difficulties

Very large soft phase

Large particle size
 Particle agglomeration

Increased oxygen pickup with reducing particle size of soft phase

Increased trend of agglomeration with reducing particle size of soft phase

Powder Coating Technologies

- DC & RF sputtering
- Pulsed laser deposition (PLD)
- Chemical (electroless) coating
- Electrolytic coating

Sputtering

- **Target:** *α***-Fe**, **Fe**-Co-V
- Argon pressure: 15 mtorr
- Sputtering time: 15 min to 20 hours

 $Nd_{14}Fe_{79.5}Ga_{0.5}B_6/ \alpha$ -Fe, DC sputtering for 20 hours, hot compacting at 630° C for 2 minutes, and die upsetting at 930° C for 4 minutes

Pulsed Laser Deposition

- **Target**: *α*-Fe or Fe-Co-V
- Laser: Nd: $Y_3AI_5O_{12}$ ($\lambda = 1064$ nm), 340 mJ/pulse and 10 Hz
- Time: 15 min to 20 hours

University of Dayton Magnetics Lab.

Chemical Coating

Chemical coating conditions

□ Ion source: $FeCl_2$, $CoCl_2$, or $FeSO_4$, $CoSO_4$ □ Reducing agent: NaH_2PO_2 □ Complexing agent: $Na_3C_6H_5O_7$ □ pH value: 5 – 8 □ Temperature: 20 – 50° C □ Time: 15 m – 3 hours

Advantage of chemical coating

Many parameters can be controlled
 A short-time process
 Cost effective and suitable for production

Results of Chemical Coating

Electrolytic Coating Apparatus

- Solution: FeSO₄·7H₂O at 0.3 mol/l with an addition of MgSO₄·4H₂O at 0.3 mol/l
- *pH value:* 2 3
- Time: 15 min 2 hours
- Anode: α-Fe or Fe-Co-V
- Cathode: Al
- cathode current density was 0.5 to 5 A/dm²

Surface Morphology of Coated Particles

SEM/EDS Results

0

Énergy (kV)

8

Demagnetization Curves

37

TEM Micrographs

Comparison of Processes

Conventional sintered Nd-Fe-B magnet

Advantage of Nanograin Composite Magnets

Potential for higher magnetic performance Potential for lower price Lower rare earth content □ Fewer processing steps Better corrosion resistance Lower rare earth content □ Especially when Nd-Fe-B particles are coated with α -Fe or Fe-Co layers Better fracture resistance □ The soft phase has relatively higher toughness □ Fine nanograin structure

Conclusions

- Bulk nanograin composite magnets with full density can be readily obtained by using rapid inductive hot compaction
- Anisotropic nanograin composite magnets with very good grain alignment can be obtained by hot compaction and hot deformation of Nd-rich Nd-Fe-B powder particles coated with α-Fe or Fe-Co layers
- New technologies lead to a new type of nanograin composite magnets
- Better powder blending and coating techniques are to be established