稀土永磁材料的近年研究工作

2014年9月,中国绵阳

美国的其它稀土永磁研究单位

- □ University of Delaware (特拉华大学)
 - George C. Hadjipanayis REPM
 - S. Ismat Shah Magnetic nanoparticles
 - John Q. Xiao Soft magnetic material
- University of Texas at Arlington (徳州大学阿灵顿分校)
 - J.P. Liu (刘平) 纳米颗粒; FePt/Fe₃Pt 纳米复合磁体 (16.3 GMOe); 各向异性纳米片
- □ University of Nebraska, Lincoln (内布拉斯加大学林肯分校)
 - D.J. Sellmyer
 - R. Smoski
- University of Dayton/WPAF
 - Y. Shen
 - J. Horwath

稀土永磁研究课题

- □ 纳米颗粒
 - FePt
 - SmCo₅
 - Nd₂Fe₁₄B
- □ 纳米复合 Sm-Co/Fe
- □ 各向异性纳米片
 - SmCo₅
 - Sm_2Co_{17}
 - Nd₂Fe₁₄B
- □ 热压/热变形纳米晶粒SmCo₅
- □ 代顿大学的工作

Y Shen

各向异性纳米片

表面活性剂辅助球磨

 $\Box Sm - Co$ $\Box Nd - Fe - B$ $\Box PrCo_5$ $\Box Tb - Dy - Fe$ $\Box Tb - Fe - B$ $\Box YCo_5$

各向异性纳米片

热变形SmCo₅纳米晶粒磁体的TEM

北工大

热变形SmCo₅纳米晶粒磁体的磁性能

热压/热变形纳米SmCo5的磁性

□ 热压纳米SmCo₅的磁性

- $B_r = 5 \text{ kG}$
- $_{\rm M}H_{\rm c} = 29.3 \text{ kOe}$
- (BH)_{max} = 6.3 MGOe

□ 70% 热变形 SmCo₅ 的磁性

- $B_r = 6.3 \text{ kG}$
- _MH_c = **50.3** kOe
- (BH)_{max} = 11.3 MGOe

□ 90% 热变形 SmCo₅ 的磁性

- $B_r = 8.4 \text{ kG}$
- $_{\rm M}H_{\rm c} = 10.1 \, {\rm kOe}$
- (BH)_{max} = 17.3 MGOe

传统 Nd-Fe-B 磁体制作工艺的改善

- □ Nd-Fe-B磁体中减少氧含量
- □ (Nd, Dy)-Fe-B 磁体中减少Dy
 - 用部分Y替换Dy
 - ●快淬的纳米复合[Nd_{0.8}(Dy_{0.5}Y_{0.5})_{0.2}]₁₀Fe₈₄B₆
 - ●提高剩磁和磁能积
 - 通过晶界扩散形成高磁晶各向异性层
 - ●Dy 扩散层 (Dy 源: Dy 蒸汽, DyH, DyF)
 - ●显著减少Dy的用量 (↓ 20-50%)
 - 增加磁化强度(↑ 3 5%)
- □ 无Dy的烧结 Nd-Fe-B磁体
 - 减小晶粒度
 - 降低含氧量

代顿大学的工作

感应加热快速热压/热变形

- □ 前期工作 Nd-Fe-B/α-Fe
- □ 含富Nd相的Nd-Fe-B快淬粉与α-Fe粉混合
 - 微米颗粒的α-Fe粉
 - 纳米颗粒α-Fe粉
- □ 含富Nd相的Nd-Fe-B快淬粉的Fe/Fe-Co镀膜
 - 电 镀
 - 水溶液
 - 非水溶液
 - 化学镀膜 (非电镀膜)
 - DC 及 RF 溅射 (Sputtering)
 - 脉冲激光镀膜 (PLD)

为什么要做粉末混合或镀膜?

- □ 最初的工作 热压/热变形单一的Nd-Fe-B/α-Fe: 性能很差,完全不能取向
- □ 第二阶段 热压/热变形两种合金粉末
 - 含有富Nd相的Nd-Fe-B
 - 贫Nd的Nd-Fe-B/α-Fe
 - 发现:随着贫Nd的Nd-Fe-B/α-Fe合金中Nd含量的进一步减少,热变形后样品的性能明显改善
 - 结论:只有含有富Nd相的Nd-Fe-B组分在热变形中可以形成织构;贫Nd的合金完全不能被取向
- □ 第三阶段 含有富Nd相的Nd-Fe-B + α-Fe 或 Fe-Co

贫Nd的Nd-Fe-B合金中Nd含量对纳米复合 磁体磁性的影响

目标纳米复合磁体中的Nd含量: 11.6 at% 富Nd合金粉末中的Nd含量: 13.5 at%

13.5 at% + 11 at% → 11.6 at% 13.5 at% + 6 at% → 11.6 at% 13.5 at% + 4 at% → 11.6 at%

采用粉末混合技术的纳米复合磁体的显微组织

- 硬磁和软磁两相之间有扩散 发生
 - 硬磁相: Nd_{13.5}Fe_{bal}Co₆Ga_{0.5}B_{5.6}
 - 软磁相: α-Fe or Fe-Co
- □ 可能的扩散产物
 - Nd₂ (Fe, Co) ₁₄B
 - Nd₂Fe₁₇, Nd2Co₁₇
- **u** Nd_2Fe_{17}
 - 低居里温度
 - 易基面
- Nd_2Co_{17}
 - 易基面

采用粉末混合技术的纳米复合磁体的退磁曲线

避免形成Nd₂Fe₁₇及Nd₂Co₁₇的途径

- □ 增加快淬Nd-Fe-B 合金中的 B含量
- □ 在软磁α-Fe或 Fe-Co 中添加 B
 - Fe-B alloy
 - Fe-Co-B alloy
- □ Fe-B 及Fe-Co-B 粉末的制备
 - 机械合金化
 - 球磨
 - 机械合金化 + 球磨

$\frac{Nd_{13.5}Fe_{74.4}Co_{6}Ga_{0.5}B_{5.6}/Fe_{94.4}B_{5.6}}{(97 \text{ wt\%/3 wt\%})}$

- □ Fe-B 合金的制作: 8 小时机械合金化球磨 + 手工破碎
- □ 3 wt% Fe-B 合金
- □ < 38 microns

Nd_{13.5}Fe_{74.4}Co₆Ga_{0.5}B_{5.6}/Fe_{94.5}B_{5.5} (94 wt%/6 wt%)的退磁曲线

纳米复合Nd_{13.5}Fe₈₀Ga_{0.5}B₆/α-Fe (95%/5%) 磁体中硬磁相的TEM组织

含富Nd相的Nd-Fe-B快淬粉的Fe/Fe-Co镀膜

a-快淬粉(片)表面

b-镀层

真空溅射 20 小时

电镀 1小时

电镀1小时

电流强度与退磁曲线的关系

电镀镀膜纳米复合样品的退磁曲线

采用非水溶液电镀纳米复合磁体的退磁曲线(1)

V = 10 - 15 v, i = 0.4 A, Time = 20 min.

采用非水溶液电镀纳米复合磁体的退磁曲线(2)

采用非水溶液电镀纳米复合磁体的退磁曲线(3)

V = 20 v, i = 1.2 A, Time = 20 min.

脉冲激光镀膜及结果

溅射镀膜及结果

化学镀膜

□ 化学镀膜的实验条件

- 离子源: FeCl₂, CoCl₂, or FeSO₄, CoSO₄
- 还原剂: NaH₂PO₂
- 复合剂: Na₃C₆H₅O₇
- pH 值: 5 8
- 温度: 20 50°C
- 镀膜时间: 15 m 3 hours
- □ 化学镀膜的优点
 - 可控参数较多
 - 氧含量低
 - 成本低廉,适于生产
- □ 化学镀膜的缺点
 - 镀膜速率低
 - 仅有少部分粉末能够被成功镀膜

化学镀膜的退磁曲线

工艺过程的比较

纳米复合稀土永磁的前景

- □ 对UD镀膜工艺以及快速感应热压、热变形加以进 一步改进和优化,在未来达到(BH)_{max} = 60 MGOe 是有可能的,达到更高,也不是不可能的
- □ 利用其它工艺路线(如各向异性纳米片)达到 (BH)_{max} = 55 MGOe 是相当困难的
- □ 即使纳米复合稀土磁体的磁性能能够达到(BH)_{max} = 60 MGOe,其实用意义也相当有限
- 纳米复合稀土磁体达到的磁能积越高,其实用意 义可能越小,除非在矫顽力的发展上能够取得重 大突破