A New Approach to Developing High-Temperature Rare Earth Magnets

Development Trend of Powder Systems

More Electric powder systems

- Gas/Electric hybrid vehicles
- More electric aircraft
- More electric ships

All Electric power systems

Advantages

- High efficiency
- Improved reliability and maintainability

Requirements

- Eliminating hydraulics: Liquid cooling \rightarrow air cooling
- High-temperature stability of electric and magnetic components
- (BH)_{max} ~ 30 MGOe at 450° C for powder system of new aircraft

Assuming a Perfect Magnet with (BH)_{max} ≈ 30 MGOe at 450°C

	$4\pi M_s$	B _r	MHc	(BH) _{max}
	(kG)	(kG)	(kOe)	(MGOe)
At 20°C	15.8	15.0	≥ 25	~53
At 450°C	12.25	11.5	≥ 12	~30

*Assuming the new magnets have the same temperature coefficients as Sm-Co

3

Converting Innovative Ideas to Future Technologies

EK USA

Current Best High-Temperature Magnets

	At 2	ذC	At 450°C	
Magnet	B _r (kG)	(BH) _{max} (MGOe)	B _r (kG)	(BH) _{max} (MGOe)
The best current Sm-Co high temperature magnets	9.3	20.8	7.2	11.8
Goal*	14.8	52.8	11.5	30

*Assuming the new magnets have the same temperature coefficients as Sm-Co

Approaches ???

Improving conventional sintered Sm₂TM₁₇ magnets

- \uparrow Fe $\rightarrow 4\pi M \rightarrow \downarrow_M H_c$ at high T
- Small amount Pr sub. For $Sm \rightarrow \uparrow 4\pi M \rightarrow \downarrow_M H_c$
- It will be very difficult to make Sm₂TM₁₇ reach 40 MGOe at 20° C or 20 MGOe at over 300° C

Nanocomposite Sm₂(Co,Fe)₁₇/α-Fe or Sm₂(Co,Fe)₁₇/Fe-Co

- $Sm_2(Co_{0.9}Fe_{0.1})_{17}/\alpha$ -Fe (70%/30%): $4\pi M_s = 15.8 \ kG$
- $Sm_2(Co_{0.9}Fe_{0.1})_{17}/Fe-Co$ (70%/22%): $4\pi M_s = 15.8 \ kG$
- Difficulties
 - When soft phase > 20%, it is difficult to have ${}_M\!H_c\approx$ 12 kOe at 20° C , let alone at 450° C
 - How to obtain the required grain alignment?

Sorverting Innovative Ideas to Future Technologies

Possible Candidates

- New compounds
- Old materials
- □ A combination of old and new materials
- Requirements
 - High Curie temperature higher than 850°C
 - High $4\pi M_s$
 - Especially high 4πM_s over 12kG at 400-450°C
 - High H_A, at least uniaxial anisotropy

Saturation Magnetization of R-Co Compounds

7 **Example 2** FutureTek USA Converting Innovative Ideas to Future Technologies

Curie Temperatures of R-Co Compounds

Characteristics of R_2Co_{17} (R = Tm, Yb, or Lu)

 $\square R_2Co_{17} (R = Tm, Yb, or Lu) have high 4\pi M_s \& T_c$

- Tm_2Co_{17} : $4\pi M_s = 12.1 \ kG$; $T_c = 910^{\circ}C$
- Yb_2Co_{17} : $4\pi M_s = 13.6 \, kG$ $T_c = ?$
- Lu_2Co_{17} : $4\pi M_s = 14.0 \, kG$ $T_C = 930 \, ^{\circ}C$

• Sm_2Co_{17} : $4\pi M_s = 12.5 \, kG$ $T_c = 920 \, ^{\circ}C$

- With increasing temperature, their 4πM_s will be higher, as HE-TM compounds
- \Box 4 π M_s at 400-450°C can be higher than those at 20°C
- R₂Co₁₇ (R = Tm, Yb, or Lu) have potential to be developed into new high-performance and hightemperature magnets

$4\pi M_s$ vs. Temperature for $Tm_2(Co,Fe)_{17}$

Converting Innovative Ideas to Future Technologies

Potential of Tm₂(Co_{0.82}Fe_{0.18})₁₇ Compound

Temperature (°C)	4πM _s (kG)	Т _с (°С)	H _A (kOe)	Theoretical (BH) _{max} (MGOe)	Achievable (BH) _{max} (MGOe)*
20	14.2		~38	50.4	45.4
300	15.0		?	56.3	50.6
400	14.8	880	?	54.8	49.3
450	14.6		?	53.3	48.0
500	14.3		?	51.1	46.0

*Assuming sufficiently high coercivity and good grain alignment can be developed and the achievable $(BH)_{max} = 90\%$ of theoretical $(BH)_{max}$.

XRD Patterns of Tm_2Co_{17} and Tm_2(Co_{0.85}Fe_{0.15})_{17}

Random and aligned powders of Tm_2Co_{17}

Random and aligned powders of $Tm_2(Co_{0.85}Fe_{0.15})_{17}$

XRD Patterns of Lu_2Co_{17} and Lu_2(Co_{0.85}Fe_{0.15})_{17}

Converting Innovative Ideas to Future Technologies

Anisotropy Filed of Lu₂Co₁₇ and Lu₂(Co_{0.85}Fe_{0.15})₁₇

A Summery of Properties for Tm₂(Co,Fe)₁₇ and Lu₂(Co,Fe)₁₇

		Lattice c	onstant (Å)			Magnetocrystalli
Compound	Crystal	a	с	c/a	v (Å ³)	anisotropy
	structure					
Tm ₂ Co ₁₇	Hexagonal	8.336	8.090	0.970	4 8 6.85	uniaxial
Tm ₂ (Co _{0.85} Fe _{0.05}) ₁₇	Hexagonal	8.328	8.160	0.980	4 90 .12	uniaxial
Lu ₂ Co ₁₇	Hexagonal	8.297	8.098	0.976	4 82 .78	easy basal plane
Lu ₂ (Co _{0.85} Fe _{0.05}) ₁₇	Hexagonal	8.312	8.152	0.981	4 8 7.76	uniaxial

Partial Fe substitution for Co increases c/a values and unit cell volumes

Temperature Dependence of Magnetization for Tm₂(Co_{0.82}Fe_{0.18})₁₇

Positive temperature coefficient of magnetization from 20 to 450°C
Magnetization at 450°C is higher than that at 20°C

Temperature Dependence of Magnetization for Yb₂(Co_{0.82}Fe_{0.18})₁₇

Positive temperature coefficient of magnetization from 20 to 325°C
Magnetization at 450°C is higher than that at 20°C

Temperature Dependence of Magnetization for Lu₂(Co_{0.82}Fe_{0.18})₁₇

Positive temperature coefficient of magnetization from 20 to 350°C
Magnetization at 450°C is higher than that at 20°C

Nanograin $R_2(Co_{0.85}Fe_{0.15})_{17}$ (R = Sm, Tm, Yb, or Lu)

- Mechanical alloying, hot compaction, and hot deformation were used to synthesize nanograin R₂(Co_{0.85}Fe_{0.15})₁₇ magnets (R = Sm, Tm, Yb, or Lu)
- Low coercivity
- Difficult to obtain anisotropic magnets
- Magnetic properties of isotropic materials

Materials	$4\pi M$	B _r	MHc
	(kG)	(kG)	(kOe)
Sm ₂ (Co _{0.85} Fe _{0.15}) ₁₇	8.3	7.3	12
$Tm_2(Co_{0.85}Fe_{0.15})_{17}$	8.3	6.5	4.6
Yb ₂ (Co _{0.85} Fe _{0.15}) ₁₇	12.0	9.2	0.9
$Lu_2(Co_{0.85}Fe_{0.15})_{17}$	11.3	7.5	1.8

Nanograin $(R,Sm)_2(Co_{0.85}Fe_{0.15})_{17}$ (R = Sm, Tm, Yb, or Lu)

 Nanograin (R_{0.4}Sm_{0.6})₂(Co_{0.85}Fe_{0.15})₁₇ (R = Tm, Yb, or Lu) were made trying to increase coercivity of these materials

Material	$4\pi M$	B _r	MHc
	(kG)	(kG)	(kOe)
$(Tm_{0.4}Sm_{0.6})_2(Co_{0.85}Fe_{0.15})_{17}$	8.5	7.0	8.0
$(Yb_{0.4}Sm_{0.6})_2(Co_{0.85}Fe_{0.15})_{17}$	9.7	7.7	5.5
$(Lu_{0.4}Sm_{0.6})_2(Co_{0.85}Fe_{0.15})_{17}$	9.2	7.4	6.1

TEM Micrograph of a Hot Compacted (Yb_{0.4}Sm_{0.6})₂(Co_{0.85}Fe_{0.15})₁₇ Magnet

High-Resolution TEM Micrograph of Hot Compacted (Yb_{0.4}Sm_{0.6})₂(Co_{0.85}Fe_{0.15})₁₇

Fine structure within a nanograin was observed

23

FutureTek USA Converting Innovative Ideas to Future Technologies

Magnetization vs. Temperature of Micro-Grain Tm(Co_{0.788}Fe_{0.1}Cu_{0.086}Z_{0.026})₇

Converting Innovative Ideas to Future Technologies

Temperature Coefficient of Magnetization for
Tm(Co_{0.788}Fe_{0.10}Cu_{0.086}Zr_{0.026})7.0

Sector Converting Innovative Ideas to Future Technologies

Sintered 2:17 Magnets with Tm, Yb, or Lu Substitution for Sm

Sintered 2:17 magnets with Tm, Yb, or Lu substitution for Sm

- To develop sufficiently high coercivity
- To make anisotropic magnets

Non-ferromagnetic Cu, Zr must be added

Processing

- Sintering: ~1200°C 1 hr
- Solid solution heat treatment: ~1190°C 3 hrs
- Isothermal aging: ~800°C for 20 40 hours
- Slow cooling: ~2°C/min. from 800 400°C

FutureTek USA Converting Innovative Ideas to Future Technologies

$(Tm_{0.4}Sm_{0.6})(Co_{0.789}Fe_{0.1}Cu_{0.085}Zr_{0.026})_{6.8}$

Temperature coefficient of specific magnetization for (Tm_{0.4}Sm_{0.6})(Co_{0.729}Fe_{0.16}Cu_{0.085}Zr_{0.026})_{7.02}

28 FutureTek USA

Converting Innovative Ideas to Future Technologies

Abundance of RE in Nature

Sorverting Innovative Ideas to Future Technologies

Conclusions & Future Research

- R₂(Co,Fe)₁₇ (R = Tm, Yb, or Lu) demonstrates high saturation magnetization and their magnetization values at 450°C are higher than those at room temperature
- High coercivity over 25 kOe was obtained in sintered anisotropic (Tm_{0.4}Sm_{0.6})(Co_{0.789}Fe_{0.1}Cu_{0.085}Zr_{0.026})_{6.8} magnets, which will be new temperature-compensated (Sm,R)₂(Co,Fe,Cu,Zr)₁₇ magnets superior to conventional (Sm,Gd)₂(Co,Fe,Cu,Zr)₁₇ magnets
- Anisotropic fields of $R_2(Co,Fe)_{17}$ (R = Tm, Yb, or Lu) are to be enhanced by, for example, partial substitution for Co
- Compositions of $R_2(Co,Fe)_{17}$ (R = Tm, Yb, or Lu) are to be modified so that anisotropic magnets can be obtained by hot deformation

Sorverting Innovative Ideas to Future Technologies